injective mapping - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

injective mapping - Übersetzung nach russisch

FUNCTION THAT PRESERVES DISTINCTNESS
Injective; One to one function; Injection (mathematics); One-to-one function; Injectivity; Injective mapping; Injective map; 1 to 1; Injective Function; ↣; Into relation; One-to-one mapping; One-to-one correlation; Onetoone; Injection function

injective mapping         

математика

инъективное отображение

инъекция

one-to-one mapping         
отображение один к одному, взаимно однозначное отображение

Definition

Mapping
·p.pr. & ·vb.n. of Map.

Wikipedia

Injective function

In mathematics, an injective function (also known as injection, or one-to-one function) is a function f that maps distinct elements of its domain to distinct elements; that is, f(x1) = f(x2) implies x1 = x2. (Equivalently, x1x2 implies f(x1) ≠ f(x2) in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of at most one element of its domain. The term one-to-one function must not be confused with one-to-one correspondence that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain.

A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an injective homomorphism is also called a monomorphism. However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see Homomorphism § Monomorphism for more details.

A function f {\displaystyle f} that is not injective is sometimes called many-to-one.

Übersetzung von &#39injective mapping&#39 in Russisch